Objective-Curry

Sadly it’s not called Schoenfinkeling, but that’s the name of the
person who noticed that there’s no reason to ever have a function with
more than one argument. What you think is a function with two
arguments is actually a function with one argument that returns a
function with one argument, this second function closing over the
first argument and acting perhaps on both.

This is, of course, famed for its application (pardon the pun) to Object-Oriented
Programming. We can take a class like this:

@interface NamePrinter : Curryable

- (void)printFirstName:(NSString *)first surname:(NSString *)last;
- (void)printFirstName:(NSString *)first age:(NSInteger)age;
- (void)printFirstName:(NSString *)first middle:(NSString *)middle surname:(NSString *)last;

@end

and use it like this:

int main(int argc, char *argv[]) {
  @autoreleasepool {
    id printer = [[NamePrinter new] autorelease];
    id curried = [printer printFirstName:@"Graham"];
    [curried surname:@"Lee"];
    [curried surname:@"Greene"];
    [curried surname:@"Garden"];
    [curried age:18];

    id alex = [printer printFirstName:@"Alexander"];
    id alexG = [alex middle:@"Graham"];
    [alexG surname:@"Bell"];
  }
}

(your compiler probably complains at this point that it doesn’t know
what you’re up to. Of course, you know better.)

We’ll get results like this:

2015-02-13 00:57:57.421 CurrySauce[41877:134228] Graham Lee
2015-02-13 00:57:57.421 CurrySauce[41877:134228] Graham Greene
2015-02-13 00:57:57.421 CurrySauce[41877:134228] Graham Garden
2015-02-13 00:57:57.422 CurrySauce[41877:134228] Graham is 18 years old
2015-02-13 00:57:57.422 CurrySauce[41877:134228] Alexander Graham Bell

OK, we don’t actually get that for free. There’s some secret sauce I
haven’t shown you: secret curry sauce.

Here be dragons

As with
all the best bits of Objective-C,
you need to turn off the automatic reference counting to do what
follows (you’ll have already seen a call to -autorelease above). ARC
works wonders when you try to write Java in Objective-C, give or take
the strong-weak-strong tango. It isn’t so helpful when you try to
write Objective-C in Objective-C.

Partial application

The NamePrinter class knows that you might call it with a partial
application, so it checks whether the selector you sent in your
message matches the prefix of any method it knows. If it does, and the
return type and argument types in this prefix can be uniquely
determined, then it creates a proxy to listen for the rest of the
application.

The restrictions on types are there due to the way that Objective-C
deals with C types in message sending. It’d be a lot easier to do this
in Ruby or Smalltalk, where everything is an object reference: as
Objective-C needs to deal with C types of different sizes, you must be
able to construct a single invocation from the prefix selector.

int argumentsForSelector(SEL aSelector)
{
  const char *name = sel_getName(aSelector);
  int count = 0;
  while(*name != '\0') {
    if (*name++ == ':') {
      count++;
    }
  }
  return count;
}

@implementation Curryable

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
  NSMethodSignature *superSignature = [super methodSignatureForSelector:aSelector];
  if (superSignature) {
    return superSignature;
  }
  NSString *thisSelectorName = NSStringFromSelector(aSelector);
  NSMutableSet *signatures = [NSMutableSet set];
  int argCount = argumentsForSelector(aSelector);
  Class currentClass = [self class];
  while (currentClass != Nil) {
    unsigned int methodCount = 0;
    Method *methodList = class_copyMethodList(currentClass, &methodCount);
    for (int i = 0; i < methodCount; i++) {
      Method method = methodList[i];
      SEL anotherSelector = method_getName(method);
      NSString *selectorName = NSStringFromSelector(anotherSelector);
      if ([selectorName hasPrefix:thisSelectorName]) {
        NSMethodSignature *fullSignature = [self methodSignatureForSelector:anotherSelector];
        NSMutableString *constructedTypeSignature = [[@"@@:" mutableCopy] autorelease];
        for (int j = 2; j < argCount + 2; j++) {
          [constructedTypeSignature appendString:@([fullSignature getArgumentTypeAtIndex:j])];
        }
        [signatures addObject:[[constructedTypeSignature copy] autorelease]];
      }
    }
    free(methodList);
    currentClass = class_getSuperclass(currentClass);
  }
  if ([signatures count] != 1) {
    NSLog(@"curried selector does not uniquely match the type of any full selector prefix");
    return nil;
  }
  return [NSMethodSignature signatureWithObjCTypes:[[signatures anyObject] UTF8String]];
}

- (void)forwardInvocation:(NSInvocation *)anInvocation
{
  id curry = [CurrySauce curryTarget:self invocation:anInvocation];
  [anInvocation setReturnValue:&curry];
}

@end

All of that, just to return a proxy object.

Finish the application

This proxy also responds to unknown selectors, by trying to tack
them onto the end of the partially-applied selector. If that works,
and it ends up with a selector that the target recognises, then it
constructs the combined invocation, copies the arguments from the two
partial invocations, and invokes it on the target. If the combined
selector is supposed to return something then this proxy unpacks the
return value and puts it into the invocation it received, to ensure
that the caller picks it up.

SEL concatenateSelectors(SEL firstSelector, SEL secondSelector)
{
  NSString *firstPart = NSStringFromSelector(firstSelector);
  NSString *selectorName = [firstPart stringByAppendingString:NSStringFromSelector(secondSelector)];
  return NSSelectorFromString(selectorName);
}

@implementation CurrySauce
{
  id target;
  NSInvocation *invocation;
}

-initWithTarget:object invocation:(NSInvocation *)partialApplication
{
  target = [object retain];
  invocation = [partialApplication retain];
  return self;
}

+curryTarget:object invocation:(NSInvocation *)partialApplication
{
  return [[[self alloc] initWithTarget:object invocation:partialApplication] autorelease];
}

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
  //special case for respondsToSelector
  if (aSelector == @selector(respondsToSelector:)) {
    return [target methodSignatureForSelector:aSelector];
  }
  SEL combinedSelector = concatenateSelectors([invocation selector], aSelector);
  NSMethodSignature *combinedSignature = [target methodSignatureForSelector:combinedSelector];
  if (combinedSignature != nil) {
    NSMutableString *completionType = [NSMutableString stringWithFormat:@"%s@:",[combinedSignature methodReturnType]];
    for (int i = argumentsForSelector([invocation selector]) + 2; i < argumentsForSelector(combinedSelector) + 2; i++) {
      [completionType appendFormat:@"%s",[combinedSignature getArgumentTypeAtIndex:i]];
    }
    return [NSMethodSignature signatureWithObjCTypes:[completionType UTF8String]];
  } else {
    return nil;
  }
}

- (void)forwardInvocation:(NSInvocation *)anInvocation
{
  if ([anInvocation selector] == @selector(respondsToSelector:)) {
    [anInvocation invokeWithTarget:target];
    return;
  }
  SEL realSelector = concatenateSelectors([invocation selector], [anInvocation selector]);
  NSMethodSignature *signature = [target methodSignatureForSelector:realSelector];
  NSInvocation *combined = [NSInvocation invocationWithMethodSignature:signature];
  int argumentToSet = 2;
  void *argBuffer = malloc([[invocation methodSignature] frameLength]);
  for (int i = 2; i < [[invocation methodSignature] numberOfArguments]; i++) {
    [invocation getArgument:argBuffer atIndex:i];
    [combined setArgument:argBuffer atIndex:argumentToSet++];
  }
  free(argBuffer);
  argBuffer = malloc([[anInvocation methodSignature] frameLength]);
  for (int i = 2; i < [[anInvocation methodSignature] numberOfArguments]; i++) {
    [anInvocation getArgument:argBuffer atIndex:i];
    [combined setArgument:argBuffer atIndex:argumentToSet++];
  }
  free(argBuffer);

  [combined setTarget:target];
  [combined setSelector:realSelector];
  [combined invoke];
  if (strcmp([[combined methodSignature] methodReturnType], "v")) {
    void *returnBuffer = malloc([[combined methodSignature] methodReturnLength]);
    [combined getReturnValue:returnBuffer];
    [anInvocation setReturnValue:returnBuffer];
    free(returnBuffer);
  }
}

- (void)dealloc
{
  [target release];
  [invocation release];
  [super dealloc];
}

@end

Conclusion

Blah blah awesome power of the runtime, I suppose. It’s pretty cool
that you can do this sort of thing in 150 lines of ObjC. I doubt many
people would want to use it for reals though.

About Graham

I make it faster and easier for you to create high-quality code.
This entry was posted in code-level, Foundation, OOP. Bookmark the permalink.

One Response to Objective-Curry

  1. Hi Graham, nice post :)

    I touched on the same topic a few days ago (*). I used a similar hack in resolveInstanceMethod to map _readonly block properties_ to actual methods. (e.g. object.printFirstName(@"Graham") to [object printFirstName:@"Graham"]).

    I eventually limited myself to single-parameter methods, but I had an experimental support at one point (using variadics. Blergh.) Using trampolines for partial application is much more elegant.

    http://bou.io/FunctionalProgrammingInObjectiveC.html

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.